پردازش اطلاعات در ابعاد کوانتومی با استفاده از گیت‌های منطقی مولکولی: مروری بر تاریخچه، ویژگی‌ها و فناوری‌های مبتنی‌بر آن

نوع مقاله : مقاله علمی-ترویجی

نویسندگان

دانشگاه و پژوهشگاه عالی دفاع ملی و تحقیقات راهبردی، پژوهشکده آماد و فناوری دفاعی، تهران، ایران

چکیده

در صنعت الکترونیک ثابت ‌شده است که، پایین آوردن مقیاس قطعات سیلیکونی تا زیر nm۱۰ و بسته‌بندی میلیون‌ها مورد از آن‌ها در یک تراشه ایدة جالبی نخواهد بود. این امر به‌دلیل مصرف انرژی بالا، هزینه ساخت بالا، محدودیت­های ناشی از مکانیک کوانتومی و دشواری­های فنی است که مانع از کوچک­تر شدنِ بیشتر افزاره­های الکترونیکی می­شوند. لذا، بایستی محققان به چیزی غیر از سیلیکون فکر کنند تا افزاره الکترونیکی با تراکم بسیار زیاد بسازند. از این‌رو، داده‌ ‌ورزی مولکولی، می­تواند با بررسی و اکتشاف گستره وسیعی از ساختارهای مولکولی، جایگزین مناسبی برای منطق دیجیتال مرسوم ارائه دهد تا قادر به کدگذاری یا دست‌کاری مؤثرِ داده­ها باشد. بنابراین، بسترهای مولکولی را می­توان به‌عنوان افزاره­های محاسباتی در نظر گرفت که براساس مجموعه­ای از عملگرهای منطقی، ورودی­های فیزیکی و شیمیایی را به خروجی­های مطلوب تبدیل می­کنند. این حوزه در زیرشاخة سخت‌افزار فناوری­های محاسبات کوانتومی قرار می­گیرد و بنابراین، ساخت     افزاره­های الکترونیکی و حسگرهای مولکولی کارآمدتر تأثیرات مثبت معناداری بر توانمندی­های دفاعی و امنیتی یک کشور دارند. در این مقالة مروری، ابتدا مختصری از تاریخچه افزاره­های مولکولی ارائه می­شود، چرا که آگاهی از سیر تحول یک موضوع علمی می­تواند زمینه­ساز پیشرفت اصولی­تر باشد. در گام بعدی، دلایل اصلی تغییر رویکرد به ‌سوی افزاره­های مولکولی توضیح داده ‌شده و با معرفی گیت­های منطقی مورد استفاده، محدودیت­های بنیادین و فنی حاکم بر ادوات کلاسیک ذکر می­شوند. سپس، قابلیت­های مختلف گیت­های منطقی مولکولی در دو زمینة الکترونیک مولکولی و حسگرهای منطقی شیمیایی به‌ تفصیل مورد بحث قرار گرفتند تا توانایی­های مولکول­ها در سامانه­های محاسباتی مختلف اثبات شوند.

کلیدواژه‌ها


[1]   “The brain – Our most energy-consuming organ,” 2013. [Online].Available: https://www.universityworldnews.com/post.php?story=20130509171737492.##
[2]   H. Bateni,  and  P. Saeidi, “The Effect of Information Quality Integrity on Information Security Risk Management,” J. Innovations Appl. Inf. Commun. Technol., vol. 1, no. 1, pp. 23–35, 2019. (In Persian)##
[3]   A. Credi, “Molecules that make decisions,” Angew. Chemie - Int. Ed., vol. 46, no. 29, pp. 5472–5475, Jul. 2007.##
[4]   S. Mann, “Life as a nanoscale phenomenon,” Angew. Chemie Int. Ed., vol. 47, no. 29, pp. 5306–5320, 2008.##
[5]   E. U. Akkaya, E. Katz, and U. Pischel, “ Molecular Logic: From Single Logic Gates to Sophisticated Logic Circuits, from Fundamental Science to Practical Applications,” ChemPhysChem, vol. 18, pp. 1665–1666, 2017.##
[6]   P. A. de Silva, N. H. Q. Gunaratne, and C. P. McCoy, “A molecular photoionic AND gate based on fluorescent signalling,” Nature, vol. 364, no. 6432, p. 42, 1993.##
[7]   J. M. Tour, “ Molecular electronics. Synthesis and testing of components,” Acc. Chem. Res., vol. 33, no. 11, pp. 791–804, 2000.##
[8]   M. prasad, M. P. Bhat, H. Jung, D. Losic, and M. D. Kurkuri, “Anion sensors as logic gates: a close encounter?,” Chem. Eur. J., vol. 22, no. 18, pp. 6148–6178, 2016.##
[9]   E. Lörtscher, “Wiring molecules into circuits,” Nat. Nanotechnol., vol. 8, no. 6, pp. 381–384, 2013.##
[10] P. A. Packan, “ Pushing the limits,” Science, vol. 285, no. 5436, pp. 2079–2081, 1999.##
[11] M. P. Frank and T. F. Knight Jr, “Ultimate theoretical models of nanocomputers,” Nanotechnology, vol. 9, no. 3, pp. 162–176, 1998.##
[12] S. Lloyd, “Ultimate physical limits to computation,” Nature, vol. 406, no. 6799, pp. 1047–1054, 2000.##
[13] J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on silicon nanoelectronics for terascale integration,” Science, vol. 293, no. 5537, pp. 2044–2049, 2001.##
[14] R. O. Carlson, “Electrical properties of near-degenerate boron-doped silicon,”  Phys. Rev., vol. 100, no. 4, pp.
1075–1078, 1955.##
[15] D. J. Frank, “Power-constrained CMOS scaling limits,” IBM J. Res. Dev., vol. 46, no. 2.3, pp. 235–244, 2002.##
[16] M. Ratner, “A brief history of molecular electronics,” Nat. Nanotechnol., vol. 8, no. 6, pp. 378–381, 2013.##
[17] B. Mann, and  H. Kuhn, “Tunneling through fatty acid salt monolayers,” J. Appl. Phys., vol. 42, no. 11, pp. 4398–4405, 1971.##
[18] A. Aviram, M. A. Ratner, “Molecular rectifiers,” Chem. Phys. Lett., vol. 29, no. 2, pp. 277–283, 1974.##
[19] G. Binnig, H. Rohrer, “Gerber Ch., Weibel E,” Phys. Rev. Lett, vol. 49, no. 1, pp. 57–68, 1982.##
[20] V. Mujica, M. Kemp, and M. A. Ratner, “Electron conduction in molecular wires. I. A scattering formalism,” J. Chem. Phys., vol. 101, no. 8, pp. 6849–6855, 1994.##
[21] C. J. Lambert, “Basic concepts of quantum interference and electron transport in single-molecule electronics,” Chem. Soc. Rev., vol. 44, no. 4, pp. 875–888, 2015.##
[22] I. Duchemin, and  C. Joachim, “A quantum digital half adder inside a single molecule,” Chem. Phys. Lett., vol. 406, no. 1–3, pp. 167–172, 2005.##
[23] “Intel,” Intel confirms 10nm delayed to 2017, 2015. [Online].Available: http://www.extremetech.com/computing/210050-intel-.##
[24] “Methods and Applications in Fluorescence,” 2013. [Online]. Available: https://iopscience.iop.org/journal/2050-6120/page/BM21.##
[25] “Christian Joachim,” 2018. [Online]. Available: https://www.nims.go.jp/mana/member/principal_investigator/christian_joachim.html.##
[26] D. Porath, A. Bezryadin, S. De Vries, and C. Dekker,
 “Direct measurement of electrical transport through DNA molecules,” Nature, vol. 403, no. 6770, pp.635-638, 2000.##